3.1158 \(\int \frac{A+C \sec ^2(c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=173 \[ \frac{\sqrt{2} (A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{C \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}-\frac{C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

-((C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*
d)) + (Sqrt[2]*(A + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*S
qrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (C*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c +
d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.484263, antiderivative size = 173, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.189, Rules used = {4265, 4089, 4023, 3808, 206, 3801, 215} \[ \frac{\sqrt{2} (A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x) \sqrt{\sec (c+d x)}}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{C \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a \sec (c+d x)+a}}-\frac{C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

-((C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]*Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*
d)) + (Sqrt[2]*(A + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])]*S
qrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]])/(Sqrt[a]*d) + (C*Sin[c + d*x])/(d*Cos[c + d*x]^(3/2)*Sqrt[a + a*Sec[c +
d*x]])

Rule 4265

Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rule 4089

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> -Simp[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n)/(f*(m + n + 1)
), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n + a
*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1
)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rule 4023

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Dist[(A*b - a*B)/b, Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Dist[B
/b, Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A
*b - a*B, 0] && EqQ[a^2 - b^2, 0]

Rule 3808

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*b*d)
/(a*f), Subst[Int[1/(2*b - d*x^2), x], x, (b*Cot[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])], x
] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3801

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[(-2*a*Sq
rt[(a*d)/b])/(b*f), Subst[Int[1/Sqrt[1 + x^2/a], x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[(a*d)/b, 0]

Rule 215

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[(Rt[b, 2]*x)/Sqrt[a]]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rubi steps

\begin{align*} \int \frac{A+C \sec ^2(c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \sec (c+d x)}} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (A+C \sec ^2(c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{C \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)} \left (\frac{1}{2} a (2 A+C)-\frac{1}{2} a C \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{a}\\ &=\frac{C \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}-\frac{\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \sqrt{\sec (c+d x)} \sqrt{a+a \sec (c+d x)} \, dx}{2 a}+\left ((A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\sqrt{\sec (c+d x)}}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{C \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}+\frac{\left (C \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{1+\frac{x^2}{a}}} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{a d}-\frac{\left (2 (A+C) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=-\frac{C \sinh ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}+\frac{\sqrt{2} (A+C) \tanh ^{-1}\left (\frac{\sqrt{a} \sqrt{\sec (c+d x)} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{\sqrt{a} d}+\frac{C \sin (c+d x)}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.44548, size = 105, normalized size = 0.61 \[ \frac{\cos \left (\frac{1}{2} (c+d x)\right ) \left (2 (A+C) \cos (c+d x) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )+2 C \sin \left (\frac{1}{2} (c+d x)\right )-\sqrt{2} C \cos (c+d x) \tanh ^{-1}\left (\sqrt{2} \sin \left (\frac{1}{2} (c+d x)\right )\right )\right )}{d \cos ^{\frac{3}{2}}(c+d x) \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + C*Sec[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]),x]

[Out]

(Cos[(c + d*x)/2]*(2*(A + C)*ArcTanh[Sin[(c + d*x)/2]]*Cos[c + d*x] - Sqrt[2]*C*ArcTanh[Sqrt[2]*Sin[(c + d*x)/
2]]*Cos[c + d*x] + 2*C*Sin[(c + d*x)/2]))/(d*Cos[c + d*x]^(3/2)*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.355, size = 248, normalized size = 1.4 \begin{align*} -{\frac{-1+\cos \left ( dx+c \right ) }{2\,ad \left ( \sin \left ( dx+c \right ) \right ) ^{2}} \left ( C\sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1-\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \cos \left ( dx+c \right ) -C\sqrt{2}\arctan \left ({\frac{\sqrt{2} \left ( \cos \left ( dx+c \right ) +1+\sin \left ( dx+c \right ) \right ) }{4}\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}} \right ) \cos \left ( dx+c \right ) +4\,A\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \cos \left ( dx+c \right ) +4\,C\arctan \left ( 1/2\,\sin \left ( dx+c \right ) \sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}} \right ) \cos \left ( dx+c \right ) +2\,C\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sin \left ( dx+c \right ) \right ) \sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}}{\frac{1}{\sqrt{-2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}}}{\frac{1}{\sqrt{\cos \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

-1/2/d*(-1+cos(d*x+c))*(C*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1-sin(d*x+c)))*cos(
d*x+c)-C*2^(1/2)*arctan(1/4*2^(1/2)*(-2/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))*cos(d*x+c)+4*A*arctan
(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+4*C*arctan(1/2*sin(d*x+c)*(-2/(cos(d*x+c)+1))^(1/2))*cos
(d*x+c)+2*C*(-2/(cos(d*x+c)+1))^(1/2)*sin(d*x+c))*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)/a/(-2/(cos(d*x+c)+1))^(1
/2)/sin(d*x+c)^2/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Maxima [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Timed out

________________________________________________________________________________________

Fricas [A]  time = 0.624187, size = 1465, normalized size = 8.47 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/4*(4*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (C*cos(d*x + c)^2 + C*cos(
d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 + 4*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(cos(d*x + c) - 2)
*sqrt(cos(d*x + c))*sin(d*x + c) - 7*a*cos(d*x + c)^2 + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 2*sqrt(2)*((
A + C)*a*cos(d*x + c)^2 + (A + C)*a*cos(d*x + c))*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/c
os(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) +
1))/sqrt(a))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c)), -1/2*(2*sqrt(2)*((A + C)*a*cos(d*x + c)^2 + (A + C)*a*co
s(d*x + c))*sqrt(-1/a)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + c))/si
n(d*x + c)) - 2*C*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) + (C*cos(d*x + c)^2
+ C*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*
x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )} \sqrt{\cos{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((A + C*sec(c + d*x)**2)/(sqrt(a*(sec(c + d*x) + 1))*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{C \sec \left (d x + c\right )^{2} + A}{\sqrt{a \sec \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+C*sec(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)/(sqrt(a*sec(d*x + c) + a)*sqrt(cos(d*x + c))), x)